
Main Features
Player Storage
Simple Commands
Localization

Player Storage
BaseIO provides an easy way to store data for the players. To use this feature just create a new
class extending com.unitedworldminers.BaseIO.storage.PlayerStorage. This will be your storage class. Every
player will have an instance of this class. You have to implement void onNewUser() , this method will
be called everytime BaseIO has to create a new user. With getUUID() you can always retrieve the
players UUID. onNewUser allows to throw a NewInstanceException when you don't want to create a
storage for that user. But be warned, when retrieving userdata you will have to check for null
storages.

To now save some values you just create your fields in your storage class. Every field in that class
will be stored, if you don't want this you can give the transistent attribute to that field.

An example storage might be:

To get a player's storage instance you just use one of the methods of the PlayerIO class.

get(String modID, UUID uuid) is the fastest way to get your storage. ModID is the id you
defined in your @Mod annotation. Use this method for cases running multiple times per
second (e.g. tick events).
get(UUID uuid) will retrieve your modID automatically, which is more expensive. Use this
method only for user-input purposes (e.g. in commands).

BaseIO saves your storage based on your modID! Changing the modID will result in data
loss!
The data itself on the other hand won't be deleted. You can try to modify the storage for
that, but there will be no support for this.

public class MyStorage extends PlayerStorage {
 boolean aBool;
 String aString;
 transient String bString;

 @Override
 protected void onNewUser() throws NewInstanceException {
 aString = "UUID: " + getUUID();
 bString = "This value won't be saved";
 }
}

https://git.unitedworldminers.com/io/BaseIO/blob/5b16a7c5eac12f183dff13fde26a74c35e1d1e80/src/main/java/com/unitedworldminers/BaseIO/storage/PlayerStorage.java

get(String name) will retrieve the player's UUID by the name and uses the method above
next.
get(ICommandSender sender) is a simplified method for general purpose, but only
EntityPlayer is allowed (FakePlayer is a subclass of EntityPlayer).

Additionally you can retrieve all storages of a player by calling ensuredGet(UUID uuid) .
Additionally you can retrieve all your storages by calling getAll(Class clazz) with clazz as your storage
class.

An example working with your storage:

PlayerIO will save your storage automatically.
To manually save or reload the data, use PlayerIO.save() or PlayerIO.load().

ICommandSender caller;
MyStorage storage = PlayerIO.get(caller);
if (storage.aBool) {
 storage.bString = "Permission granted.";
 PlayerIO.save();
}

Simple Commands
BaseIO simplifies command creation with the class SimpleCommand . Instead of implementing
ICommand you extend SimpleCommand .

This is what SimpleCommand can do for you:

Simple command names
getCommandName() and getCommandAliases() are combined in commandNames() where the
first command name is the actual command name and the others are aliases. Example:

public List<String> commandNames() {
 //return Collections.singletonList("name1");
 return Arrays.asList("name1", "name2", "name3");
}

localized/default command usage
Provide a localization key in commandUsage() and it will be localized as described in
Localization. Provide an invalid or no (null) localization key and SimpleCommand creates a
default command usage for you based on the arguments.

redundancy removal
isUsernameIndex and compareTo are removed.

Options
You can define command options in getOptions() . Options are arguments starting with a
hyphen that can be used at any position of the arguments. Additionally options might
have arguments attached to themselves. When implemented, getOptions() must return a
map with the option string as the key and a string array of potential option arguments, the
elements describing the option argument at its index. If found, the options will be cut out
of the argument array and added to the option set that will be passed to the run method
you have to implement in your command.

If you don't like the simplifications made by this feature just override the original method
from ICommand.

https://wiki.ender.io/books/baseio/page/localization

Example:

 If now a player uses the command /mycommand arg1 arg2 -opt1 A B arg3 -opt3 the output
would be:

@Override
public void run(MinecraftServer server, ICommandSender sender, String[] args, Map<String, String[]> options) {
 System.out.println("Args: " + String.join(" ", args));
 for (Map.Entry<String, String[]> option: options.entrySet()) {
 System.out.println("Option " + option.getKey() + ": " + (option.getValue == null ? "null" : String.join(" ", option.getValue())));
 }
}

@NotNull
@Override
protected Map<String, String[]> getOptions() {
 //return Utils.mapKeys("opt1", "opt2", "opt3");
 return Utils.map("opt1", new String[]{"oa1", "oa2"}, "opt2", null, "opt3", null);
}

Args: arg1 arg2 arg3
Option opt1: A B
Option opt3: null

Tab Completion
Tab completions can be defined by the return string in tabCompletions() . The syntax
allowes highly configurable tab completions:
1. The completions for each argument are seperated by a space.
2. The different completions for an argument are seperated by a pipe ("|").
3. Conditions for a completion are written in braces directly before it.
4. If you have multiple completions for a condition you can seperate them by a comma

instead of a pipe.
Conditions are arguments that have to be typed anywhere before the completion. With
that you are able to implement completely different tab completions based on the
arguments the user used. See the example for usage.

Examples:
"comp1|comp2|comp3" => The completions "comp1","comp2" and "comp3" for the first argument

"compA compB1|compB2 compC" =>
 "compA" for the first, "compB1" and "compB2" for the second and "compC" for the third argument

"compA1|compA2 (compA1)compB1,compB2|compB3" =>
 "compA1" and "compA2" for the first argument, "compB3" for the second argument, "compB1" and "compB2" only if argument 1 is "compA1".

Variables are available for tab completions. They are defined by a leading "%" and are
also customizable. Build-in variables are:

%d : Dimensions (can be resolved to the dimension id by WorldUtils.
%p : Players
%null : No completions (explicitly)

Additionally you can define your own variable by implementing customTabCompletions . This
method will be called if the tab completion contains an unknown variable and requests a
list of completions for this variable. The currently requested variable is found in the
parameter tag without the leading % . Other parameters are the command sender, the
currently typed arguments and the completions up to that point (read-only).

Example:
@Override
protected String tabCompletions() {
 return "compA|%p|%var1";
}

@Override
protected Collection<String> customTabCompletions(String tag, List<String> current, ICommandSender sender, String[] args) {
 if (tag.equals("var1")) {
 return Collections.singletonList("result1");
 }
 return null;
}

Localization

Localization is a feature of MessageUtils.

Setup
To start working with BaseIO's localization feature just call
MessageUtils.setupTranslations(langResourcePath) . For the most basic setup use null as parameter and
you're done. Now server admins can add translations for your strings as they wish.

If you want to add your own translations to your mod fill langResourcePath with a string path
pointing to a folder in your mod resources.

For example BaseIO has MessageUtils.setupTranslations("com/unitedworldminers/BaseIO/lang") .
It is recommended to call this method in your init method (FMLInitializationEvent).

Creating localization mappings

The mapping files itself are the same as the ones from Minecraft: <key>=<mapping>, an example file
can be found on the right sidebar. This files have to be named by the language tag given by
Minecraft and must have the extension .lang .

It is highly recommended that you use this feature as it also allows server admins to
customize your strings.

The default language file is en_US.lang . This file will be used if you aren't providing the
correct language.

You can use almost any string as a key, but it's recommended to abstract them.

https://wiki.ender.io/uploads/images/gallery/2017-10-Oct/langResourcePath.PNG
https://wiki.ender.io/uploads/images/gallery/2017-06-Jun/langResourcePath.PNG
http://minecraft.gamepedia.com/Language

In the mappings you can use arguments following the same format of the java formatter (
String.format). These arguments can be injected in the method calls using localizations.

If you are a modder you put the files in your resource folder that you pointed at in setupTranslations .
If you are a server admin you can put the files into config/lang/<modid>/ .

Using localizations
Your localizations can be used in

MessageUtils.messageToSender()
Simplecommand's commandUsage()
Manually: MessageUtils.getTranslation()

You can reload the mappings with /baseio reloadMessages <modid>.

