
Packet filtering
CommandSenderUtils
CommunicationUtils
Simple ItemStack creation
DataUtils
PlayerUtils

Util Classes

BaseIONetworkManager contains two fields: sendFilters and receiveFilters. You can filter packets
just by adding your own filter to these filter sets. A filter is defined as BiPredicate<Packet,
NetworkManager> . If the BiPredicate returns true the packet will be filtered and consequently no
further processed. For performance purposes you should always check for the correct
packet type first.

Example:

Packet filtering

The NetworkManager instance is provided on purpose:
You can get Player connection information with
 ((InetSocketAddress)net.channel().remoteAddress()).getAddress().getHostAddress() (here: player's IP).
You can get the player object with
 ((NetHandlerPlayServer)net.getNetHandler()).playerEntity .
Keep in mind that depending on your packet you have other INetHandler s than
NetHandlerPlayServer .

BaseIONetworkManager.receiveFilters.add((packet, networkManager) -> {
 if (packet instanceof CPacketLoginStart) {
 CPacketLoginStart packet = (CPacketLoginStart) p;
 GameProfile player = packet.getProfile();
 Logger.info("GameProfile " + player.toString() + " tries to connect");
 }
 return true;
});

CommandSenderUtils provides methods for differentiating different ICommandSender s. You can
differentiate between

The console: isConsole(sender)
Players isPlayer(sender)
FakePlayers isFakePlayer(sender)
Operators isCommandSenderOp(sender)

CommandSenderUtils

CommunicationUtils groups functions for communicating with users.

Since 1.8 Minecraft provides the possibility to click on custom elements in chat. The method
clickEvent(sender, msg, options...) gives this feature to the mod.

As this feature is being reworked, just a quick look-over:
Currently this command creates a simple choice list. Example:

InventoryMenu provides a system to create menus based on the ability to click on chest slots.
InvMenu.png

To create your own menu BaseIO provides a fast construction method:
public InventoryMenu(String title, boolean doBackButton, Pair<ItemStack, TriConsumer<EntityPlayerMP,

InventoryMenu, Object[]>>... items (same also available with items as an iterator)

title describes the name of the container (Example: "[Shop] Buy Menu")
doBackButton defines wether the first slot in the inventory should be a back button (to a menu
before)
items is a list (or varargs) of Pairs. The index in the list defines the position of the item. The first
element of the Pair is the item that should be displayed at the slot, the second is a method
(TriConsumer, here implemented with a lambda) that will be called when the player clicks on the
slot. The custom ItemStack creation helps creating the ItemStack.

An example constructor would be (Java 8):

CommunicationUtils

Click events

This feature allows localized strings

clickEvent(sender, "Stop server?", new Pair<>(" [Yes]", ()-> System.exit(0)), new Pair<>(" [No]", ()->
MessageUtils.messageToSender(sender, "Okay.")))

Player chat:
Stop server? [Yes] [No]

Inventory Menus

https://wiki.ender.io/uploads/images/gallery/2017-06-Jun/InvMenu.png
https://wiki.ender.io/books/baseio/page/simple-itemstack-creation
https://wiki.ender.io/books/baseio/page/localization

 As you can see the menu creation is pretty simple.
This example would create a menu with an apple in the first slot and a stone in the third slot. If you
click on the apple the server will give you an apple. The stone has no interaction.

When the user is in an InventoryMenu it is not possible to make an input via chat. You should use
AnvilEdit instead.
AnvilEdit opens an anvil GUI

InventoryMenu myMenu = new InventoryMenu("My Menu", false,
 Pair.create(new DisplayStackGen(Items.APPLE).name("give apple!").gen(), (player, menu, args)->
player.inventory.addItemStackToInventory(new ItemStack(Items.APPLE))),
 null,
 Pair.create(new DisplayStackGen(Blocks.STONE).name("STONE").ench().gen(), null)
)

Value input

DisplayStackGen is a simple util class that is able to generate your own ItemStack in one line.

To create a new ItemStack with this class just create a new DisplayStackGen object, configure it and
at the end call .gen() , witch creates the ItemStack . Examples:

item(Item) set the displayed item

block(Block) set the displayed item corresponding to the block

ench() set the item glowing (enchanted)

name(String) set the name of the item. Color codes accepted

tooltip(String...) set the item tooltip. Multiple strings are allowed for
multiple lines for the tooltip

count(int) set the item count displayed

damage(int) set the item damage (metadata)

Simple ItemStack creation

new DisplayStackGen().gen(); // RuntimeException, you forgot to define an item.
new DisplayStackGen().item(Items.APPLE).gen(); // An apple.
new DisplayStackGen().block(Blocks.STONE).gen(); // A stone.
new DisplayStackGen(Blocks.STONE).gen(); // Same as above, works for both blocks and items.
new DisplayStackGen(Items.APPLE).ench().count(2).name("APPLE").tooltip("not android").gen(); // Two shiny apples with fitting name and tooltip.

Methods

DataUtils is a class designed to load and save all data from or to a file (e.g. PlayerIO is based on it)
and is frankly just a wrapper for Google's gson project, adding some Minecraft-related type
adapters.

In the most simple way you save your object by just calling DataUtils.saveData(Object obj, Type objType,
String filename) .
ObjType has to be the type of the object to save. If your object has no generics you can simply use
your objects class, otherwise I recommend using new TypeToken<your object>(){}.getType() . The
filename is a string that will be handed over to a java.io.File constructor. If the filename has no
extension .json will be used as default.

Example:

If you want to save a class that can't be serialized (e.g. abstract classes) like a normal object (just
fields) you have to write a TypeAdapter for it. You should inform yourself how to do that, here's a
simple TypeAdapter:

DataUtils

Simple setup
Loading

Saving

List<String> list = new ArrayList<>();
Type listType = new TypeToken<List<String>>(){}.getType();

// DataUtils.saveData(list, List.class, "testfile"); // WRONG - only use for objects without generics

DataUtils.saveData(list, listType, "testfile"); // CORRECT - will be saved to ./testfile.json

Adding your own TypeAdapters

public class UUIDTypeAdapter extends TypeAdapter<UUID> {
 @Override

https://wiki.ender.io/books/baseio/page/player-storage

To use this TypeAdapter in conjunction with DataUtils you can use
DataUtils.with(Collections.singletonMap(UUID.class, new UUIDTypeAdapter()) . This returns you a DataUtils
instance with additionally registered UUIDTypeAdapter. DataUtils.with acctepts a Map with the Type
as key and either TypeAdapter or TypeAdapterFactory (Also all other type adapters gson is
supporting).

 public void write(JsonWriter out, UUID value) throws IOException {
 out.value(value.toString() + " (" + Utils.orDefault(PlayerUtils.getName(value), "unknown") + ')');
 }

 @Override
 public UUID read(JsonReader in) throws IOException {
 return UUID.fromString(in.nextString().replaceFirst(" \\(.+\\)",
"").replaceFirst("(\\w{8})(\\w{4})(\\w{4})(\\w{4})(\\w{12})", "$1-$2-$3-$4-$5"));
 }
}

For easy mapping of multiple type adapters you can use Utils.map(key, value, key, value, ...)

PlayerUtils.teleportPlayerUnsafe(EntityPlayerMP player, Position position) teleports a player to the specified
position forcibly. If you want to be sure the player doesn't teleport into blocks, use
PlayerUtils.teleportPlayer(EntityPlayerMP player, Position position, boolean noisy) . When the destination is an
unsafe block this method won't teleport the player, returning false and (with noisy = true) printing
a message to the player specifying the problem. For convenience teleportPlayer is overloaded with
a ICommandSender instead of EntityPlayerMP (other senders than EntityPlayerMP will be
discarded).

You might want to search a player by it's name quite often. For such cases (and many more
"conversions") PlayerUtils provides a full set of conversion methods:

↓ From | To → UUID Name GameProfile EntityPlayer ICommandSend
er

UUID PlayerUtils:getNa
me

PlayerUtils:getGa
meProfile

PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

Name PlayerUtils:getUU
ID

 PlayerUtils:getGa
meProfile

PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

GameProfile GameProfile:getI
d

GameProfile:getN
ame

 PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

PlayerUtils
Player Teleportation

In version 1.10 BaseIO contains multiple teleport implementations. If you encounter issues
regarding teleportations, try switching the implementation in BaseIO's config file

Identifier conversion

https://wiki.ender.io/uploads/images/gallery/2017-11-Nov/neu0.png

EntityPlayer EntityPlayer:getU
niqueId

ICommandSende
r:getName

EntityPlayer:getP
rofile

 typecast

ICommandSend
er

PlayerUtils:getUU
ID

ICommandSende
r:getName

(only via
typecast)

typecast

If no player is found null will be returned.

All conversion methods have a range parameter that determines how broad the search should be.

Range Inclusion Full search area

ONLINE Includes online players online players

FAKE Includes fake players online (fake)players

SERVER Includes offline players online/offline (fake)players

ALL Includes players that have never been
on the server

all minecraft players

In 1.7, ICommandSender:getName was named ICommandSender:getCommandSenderName

PlayerUtils is capable to convert any ICommandSender to an UUID, including console and
command blocks. This UUID might not be a valid UUID of Minecraft but it can be used to
identify it and additionally PlayerUtils:getName supports these UUIDs. Every Command
Sender of one class has the same UUID.

Ranges

