
BaseIO
A library mod for many UWM mods

Util Classes

Packet filtering
CommandSenderUtils
CommunicationUtils
Simple ItemStack creation
DataUtils
PlayerUtils

Main Features

Player Storage
Simple Commands
Localization

Background Features

Util Classes

Util Classes

Packet filtering
BaseIONetworkManager contains two fields: sendFilters and receiveFilters. You can filter packets
just by adding your own filter to these filter sets. A filter is defined as BiPredicate<Packet,
NetworkManager> . If the BiPredicate returns true the packet will be filtered and consequently no
further processed. For performance purposes you should always check for the correct
packet type first.

Example:

The NetworkManager instance is provided on purpose:
You can get Player connection information with
 ((InetSocketAddress)net.channel().remoteAddress()).getAddress().getHostAddress() (here: player's IP).
You can get the player object with
 ((NetHandlerPlayServer)net.getNetHandler()).playerEntity .
Keep in mind that depending on your packet you have other INetHandler s than
NetHandlerPlayServer .

BaseIONetworkManager.receiveFilters.add((packet, networkManager) -> {
 if (packet instanceof CPacketLoginStart) {
 CPacketLoginStart packet = (CPacketLoginStart) p;
 GameProfile player = packet.getProfile();
 Logger.info("GameProfile " + player.toString() + " tries to connect");
 }
 return true;
});

Util Classes

CommandSenderUtils
CommandSenderUtils provides methods for differentiating different ICommandSender s. You can
differentiate between

The console: isConsole(sender)
Players isPlayer(sender)
FakePlayers isFakePlayer(sender)
Operators isCommandSenderOp(sender)

Util Classes

CommunicationUtils
CommunicationUtils groups functions for communicating with users.

Click events

Since 1.8 Minecraft provides the possibility to click on custom elements in chat. The method
clickEvent(sender, msg, options...) gives this feature to the mod.

As this feature is being reworked, just a quick look-over:
Currently this command creates a simple choice list. Example:

Inventory Menus
InventoryMenu provides a system to create menus based on the ability to click on chest slots.
InvMenu.pngImage not found or type unknown

To create your own menu BaseIO provides a fast construction method:
public InventoryMenu(String title, boolean doBackButton, Pair<ItemStack, TriConsumer<EntityPlayerMP,

InventoryMenu, Object[]>>... items (same also available with items as an iterator)

title describes the name of the container (Example: "[Shop] Buy Menu")
doBackButton defines wether the first slot in the inventory should be a back button (to a menu
before)
items is a list (or varargs) of Pairs. The index in the list defines the position of the item. The first
element of the Pair is the item that should be displayed at the slot, the second is a method
(TriConsumer, here implemented with a lambda) that will be called when the player clicks on the
slot. The custom ItemStack creation helps creating the ItemStack.

An example constructor would be (Java 8):

This feature allows localized strings

clickEvent(sender, "Stop server?", new Pair<>(" [Yes]", ()-> System.exit(0)), new Pair<>(" [No]", ()->
MessageUtils.messageToSender(sender, "Okay.")))

Player chat:
Stop server? [Yes] [No]

https://wiki.ender.io/uploads/images/gallery/2017-06-Jun/InvMenu.png
https://wiki.ender.io/books/baseio/page/simple-itemstack-creation
https://wiki.ender.io/books/baseio/page/localization

 As you can see the menu creation is pretty simple.
This example would create a menu with an apple in the first slot and a stone in the third slot. If you
click on the apple the server will give you an apple. The stone has no interaction.

Value input
When the user is in an InventoryMenu it is not possible to make an input via chat. You should use
AnvilEdit instead.
AnvilEdit opens an anvil GUI

InventoryMenu myMenu = new InventoryMenu("My Menu", false,
 Pair.create(new DisplayStackGen(Items.APPLE).name("give apple!").gen(), (player, menu, args)->
player.inventory.addItemStackToInventory(new ItemStack(Items.APPLE))),
 null,
 Pair.create(new DisplayStackGen(Blocks.STONE).name("STONE").ench().gen(), null)
)

Util Classes

Simple ItemStack creation
DisplayStackGen is a simple util class that is able to generate your own ItemStack in one line.

To create a new ItemStack with this class just create a new DisplayStackGen object, configure it and
at the end call .gen() , witch creates the ItemStack . Examples:

Methods
item(Item) set the displayed item

block(Block) set the displayed item corresponding to the block

ench() set the item glowing (enchanted)

name(String) set the name of the item. Color codes accepted

tooltip(String...) set the item tooltip. Multiple strings are allowed for
multiple lines for the tooltip

count(int) set the item count displayed

damage(int) set the item damage (metadata)

new DisplayStackGen().gen(); // RuntimeException, you forgot to define an item.
new DisplayStackGen().item(Items.APPLE).gen(); // An apple.
new DisplayStackGen().block(Blocks.STONE).gen(); // A stone.
new DisplayStackGen(Blocks.STONE).gen(); // Same as above, works for both blocks and items.
new DisplayStackGen(Items.APPLE).ench().count(2).name("APPLE").tooltip("not android").gen(); // Two shiny apples with fitting name and tooltip.

Util Classes

DataUtils
DataUtils is a class designed to load and save all data from or to a file (e.g. PlayerIO is based on it)
and is frankly just a wrapper for Google's gson project, adding some Minecraft-related type
adapters.

Simple setup
Loading

Saving
In the most simple way you save your object by just calling DataUtils.saveData(Object obj, Type objType,
String filename) .
ObjType has to be the type of the object to save. If your object has no generics you can simply use
your objects class, otherwise I recommend using new TypeToken<your object>(){}.getType() . The
filename is a string that will be handed over to a java.io.File constructor. If the filename has no
extension .json will be used as default.

Example:

Adding your own TypeAdapters
If you want to save a class that can't be serialized (e.g. abstract classes) like a normal object (just
fields) you have to write a TypeAdapter for it. You should inform yourself how to do that, here's a
simple TypeAdapter:

List<String> list = new ArrayList<>();
Type listType = new TypeToken<List<String>>(){}.getType();

// DataUtils.saveData(list, List.class, "testfile"); // WRONG - only use for objects without generics

DataUtils.saveData(list, listType, "testfile"); // CORRECT - will be saved to ./testfile.json

https://wiki.ender.io/books/baseio/page/player-storage

To use this TypeAdapter in conjunction with DataUtils you can use
DataUtils.with(Collections.singletonMap(UUID.class, new UUIDTypeAdapter()) . This returns you a DataUtils
instance with additionally registered UUIDTypeAdapter. DataUtils.with acctepts a Map with the Type
as key and either TypeAdapter or TypeAdapterFactory (Also all other type adapters gson is
supporting).

public class UUIDTypeAdapter extends TypeAdapter<UUID> {
 @Override
 public void write(JsonWriter out, UUID value) throws IOException {
 out.value(value.toString() + " (" + Utils.orDefault(PlayerUtils.getName(value), "unknown") + ')');
 }

 @Override
 public UUID read(JsonReader in) throws IOException {
 return UUID.fromString(in.nextString().replaceFirst(" \\(.+\\)",
"").replaceFirst("(\\w{8})(\\w{4})(\\w{4})(\\w{4})(\\w{12})", "$1-$2-$3-$4-$5"));
 }
}

For easy mapping of multiple type adapters you can use Utils.map(key, value, key, value, ...)

Util Classes

PlayerUtils
Player Teleportation

PlayerUtils.teleportPlayerUnsafe(EntityPlayerMP player, Position position) teleports a player to the specified
position forcibly. If you want to be sure the player doesn't teleport into blocks, use
PlayerUtils.teleportPlayer(EntityPlayerMP player, Position position, boolean noisy) . When the destination is an
unsafe block this method won't teleport the player, returning false and (with noisy = true) printing
a message to the player specifying the problem. For convenience teleportPlayer is overloaded with
a ICommandSender instead of EntityPlayerMP (other senders than EntityPlayerMP will be
discarded).

Identifier conversion
You might want to search a player by it's name quite often. For such cases (and many more
"conversions") PlayerUtils provides a full set of conversion methods:

↓ From | To → UUID Name GameProfile EntityPlayer ICommandSend
er

UUID PlayerUtils:getNa
me

PlayerUtils:getGa
meProfile

PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

Name PlayerUtils:getUU
ID

 PlayerUtils:getGa
meProfile

PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

In version 1.10 BaseIO contains multiple teleport implementations. If you encounter issues
regarding teleportations, try switching the implementation in BaseIO's config file

https://wiki.ender.io/uploads/images/gallery/2017-11-Nov/neu0.png

GameProfile GameProfile:getI
d

GameProfile:getN
ame

 PlayerUtils:getPla
yer

PlayerUtils:getPla
yer

EntityPlayer EntityPlayer:getU
niqueId

ICommandSende
r:getName

EntityPlayer:getP
rofile

 typecast

ICommandSend
er

PlayerUtils:getUU
ID

ICommandSende
r:getName

(only via
typecast)

typecast

If no player is found null will be returned.

Ranges
All conversion methods have a range parameter that determines how broad the search should be.

Range Inclusion Full search area

ONLINE Includes online players online players

FAKE Includes fake players online (fake)players

SERVER Includes offline players online/offline (fake)players

ALL Includes players that have never been
on the server

all minecraft players

In 1.7, ICommandSender:getName was named ICommandSender:getCommandSenderName

PlayerUtils is capable to convert any ICommandSender to an UUID, including console and
command blocks. This UUID might not be a valid UUID of Minecraft but it can be used to
identify it and additionally PlayerUtils:getName supports these UUIDs. Every Command
Sender of one class has the same UUID.

Main Features

Main Features

Player Storage
BaseIO provides an easy way to store data for the players. To use this feature just create a new
class extending com.unitedworldminers.BaseIO.storage.PlayerStorage. This will be your storage class. Every
player will have an instance of this class. You have to implement void onNewUser() , this method will
be called everytime BaseIO has to create a new user. With getUUID() you can always retrieve the
players UUID. onNewUser allows to throw a NewInstanceException when you don't want to create a
storage for that user. But be warned, when retrieving userdata you will have to check for null
storages.

To now save some values you just create your fields in your storage class. Every field in that class
will be stored, if you don't want this you can give the transistent attribute to that field.

An example storage might be:

To get a player's storage instance you just use one of the methods of the PlayerIO class.

get(String modID, UUID uuid) is the fastest way to get your storage. ModID is the id you
defined in your @Mod annotation. Use this method for cases running multiple times per
second (e.g. tick events).

BaseIO saves your storage based on your modID! Changing the modID will result in data
loss!
The data itself on the other hand won't be deleted. You can try to modify the storage for
that, but there will be no support for this.

public class MyStorage extends PlayerStorage {
 boolean aBool;
 String aString;
 transient String bString;

 @Override
 protected void onNewUser() throws NewInstanceException {
 aString = "UUID: " + getUUID();
 bString = "This value won't be saved";
 }
}

https://git.unitedworldminers.com/io/BaseIO/blob/5b16a7c5eac12f183dff13fde26a74c35e1d1e80/src/main/java/com/unitedworldminers/BaseIO/storage/PlayerStorage.java

get(UUID uuid) will retrieve your modID automatically, which is more expensive. Use this
method only for user-input purposes (e.g. in commands).
get(String name) will retrieve the player's UUID by the name and uses the method above
next.
get(ICommandSender sender) is a simplified method for general purpose, but only
EntityPlayer is allowed (FakePlayer is a subclass of EntityPlayer).

Additionally you can retrieve all storages of a player by calling ensuredGet(UUID uuid) .
Additionally you can retrieve all your storages by calling getAll(Class clazz) with clazz as your storage
class.

An example working with your storage:

PlayerIO will save your storage automatically.
To manually save or reload the data, use PlayerIO.save() or PlayerIO.load().

ICommandSender caller;
MyStorage storage = PlayerIO.get(caller);
if (storage.aBool) {
 storage.bString = "Permission granted.";
 PlayerIO.save();
}

Main Features

Simple Commands
BaseIO simplifies command creation with the class SimpleCommand . Instead of implementing
ICommand you extend SimpleCommand .

This is what SimpleCommand can do for you:

Simple command names
getCommandName() and getCommandAliases() are combined in commandNames() where the
first command name is the actual command name and the others are aliases. Example:

public List<String> commandNames() {
 //return Collections.singletonList("name1");
 return Arrays.asList("name1", "name2", "name3");
}

localized/default command usage
Provide a localization key in commandUsage() and it will be localized as described in
Localization. Provide an invalid or no (null) localization key and SimpleCommand creates a
default command usage for you based on the arguments.

redundancy removal
isUsernameIndex and compareTo are removed.

Options
You can define command options in getOptions() . Options are arguments starting with a
hyphen that can be used at any position of the arguments. Additionally options might
have arguments attached to themselves. When implemented, getOptions() must return a
map with the option string as the key and a string array of potential option arguments, the
elements describing the option argument at its index. If found, the options will be cut out
of the argument array and added to the option set that will be passed to the run method
you have to implement in your command.

If you don't like the simplifications made by this feature just override the original method
from ICommand.

https://wiki.ender.io/books/baseio/page/localization

Example:

 If now a player uses the command /mycommand arg1 arg2 -opt1 A B arg3 -opt3 the output
would be:

@Override
public void run(MinecraftServer server, ICommandSender sender, String[] args, Map<String, String[]> options) {
 System.out.println("Args: " + String.join(" ", args));
 for (Map.Entry<String, String[]> option: options.entrySet()) {
 System.out.println("Option " + option.getKey() + ": " + (option.getValue == null ? "null" : String.join(" ", option.getValue())));
 }
}

@NotNull
@Override
protected Map<String, String[]> getOptions() {
 //return Utils.mapKeys("opt1", "opt2", "opt3");
 return Utils.map("opt1", new String[]{"oa1", "oa2"}, "opt2", null, "opt3", null);
}

Args: arg1 arg2 arg3
Option opt1: A B
Option opt3: null

Tab Completion
Tab completions can be defined by the return string in tabCompletions() . The syntax
allowes highly configurable tab completions:
1. The completions for each argument are seperated by a space.
2. The different completions for an argument are seperated by a pipe ("|").
3. Conditions for a completion are written in braces directly before it.
4. If you have multiple completions for a condition you can seperate them by a comma

instead of a pipe.
Conditions are arguments that have to be typed anywhere before the completion. With
that you are able to implement completely different tab completions based on the
arguments the user used. See the example for usage.

Examples:
"comp1|comp2|comp3" => The completions "comp1","comp2" and "comp3" for the first argument

"compA compB1|compB2 compC" =>
 "compA" for the first, "compB1" and "compB2" for the second and "compC" for the third argument

"compA1|compA2 (compA1)compB1,compB2|compB3" =>
 "compA1" and "compA2" for the first argument, "compB3" for the second argument, "compB1" and "compB2" only if argument 1 is "compA1".

Variables are available for tab completions. They are defined by a leading "%" and are
also customizable. Build-in variables are:

%d : Dimensions (can be resolved to the dimension id by WorldUtils.
%p : Players
%null : No completions (explicitly)

Additionally you can define your own variable by implementing customTabCompletions . This
method will be called if the tab completion contains an unknown variable and requests a
list of completions for this variable. The currently requested variable is found in the
parameter tag without the leading % . Other parameters are the command sender, the
currently typed arguments and the completions up to that point (read-only).

Example:
@Override
protected String tabCompletions() {
 return "compA|%p|%var1";
}

@Override
protected Collection<String> customTabCompletions(String tag, List<String> current, ICommandSender sender, String[] args) {
 if (tag.equals("var1")) {
 return Collections.singletonList("result1");
 }
 return null;
}

Main Features

Localization

Localization is a feature of MessageUtils.

Setup
To start working with BaseIO's localization feature just call
MessageUtils.setupTranslations(langResourcePath) . For the most basic setup use null as parameter and
you're done. Now server admins can add translations for your strings as they wish.

If you want to add your own translations to your mod fill langResourcePath with a string path
pointing to a folder in your mod resources.

For example BaseIO has MessageUtils.setupTranslations("com/unitedworldminers/BaseIO/lang") .
It is recommended to call this method in your init method (FMLInitializationEvent).

Creating localization mappings

The mapping files itself are the same as the ones from Minecraft: <key>=<mapping>, an example file
can be found on the right sidebar. This files have to be named by the language tag given by

It is highly recommended that you use this feature as it also allows server admins to
customize your strings.

The default language file is en_US.lang . This file will be used if you aren't providing the
correct language.

You can use almost any string as a key, but it's recommended to abstract them.

https://wiki.ender.io/uploads/images/gallery/2017-10-Oct/langResourcePath.PNG
https://wiki.ender.io/uploads/images/gallery/2017-06-Jun/langResourcePath.PNG
http://minecraft.gamepedia.com/Language

Minecraft and must have the extension .lang .

In the mappings you can use arguments following the same format of the java formatter (
String.format). These arguments can be injected in the method calls using localizations.

If you are a modder you put the files in your resource folder that you pointed at in setupTranslations .
If you are a server admin you can put the files into config/lang/<modid>/ .

Using localizations
Your localizations can be used in

MessageUtils.messageToSender()
Simplecommand's commandUsage()
Manually: MessageUtils.getTranslation()

You can reload the mappings with /baseio reloadMessages <modid>.

Background Features
Help Fixer
BaseIO contains the fixed /help command from matthewprenger.
Mod Page
Source

Ban Entry Fixer
Minecraft contains a bug/flaw/irritating feature that causes a new ban to forget the ban date and
replaces it with the ban end date. Problem is that you can't see when the user got banned. BaseIO
fixes that.

Duplicate Command
BaseIO adds support for multiple commands with the same name by adding a duplicate command.
If you execute a command with multiple meanings a selector will be displayed so you can choose
for the command you want. Additionally your choice will be saved so you don't need to do select
everytime.

You can disable this feature in the config located in config/BaseIO.cfg

https://minecraft.curseforge.com/projects/helpfixer
https://github.com/matthewprenger/HelpFixer

