DataUtils

DataUtils is a class designed to load and save all data from or to a file (e.g. PlayerlO is based on it)
and is frankly just a wrapper for Google's gson project, adding some Minecraft-related type
adapters.

Simple setup

Loading

Saving

In the most simple way you save your object by just calling DataUtils.saveData(Object obj, Type objType,
String filename) .

ObjType has to be the type of the object to save. If your object has no generics you can simply use
your objects class, otherwise | recommend using new TypeToken<your object>(){}.getType() . The
filename is a string that will be handed over to a java.io.File constructor. If the filename has no
extension .json will be used as default.

Example:

List<String> list = new ArrayList<>();

Type listType = new TypeToken<List<String>>(){}.getType();
// DataUtils.saveData(list, List.class, "testfile"); // WRONG - only use for objects without generics

DataUtils.saveDatal(list, listType, "testfile"); // CORRECT - will be saved to ./testfile.json

Adding your own TypeAdapters

If you want to save a class that can't be serialized (e.g. abstract classes) like a normal object (just
fields) you have to write a TypeAdapter for it. You should inform yourself how to do that, here's a
simple TypeAdapter:

public class UUIDTypeAdapter extends TypeAdapter<UUID> {
@Override

https://wiki.ender.io/books/baseio/page/player-storage

public void write(JsonWriter out, UUID value) throws IOException {
out.value(value.toString() + " (" + Utils.orDefault(PlayerUtils.getName(value), "unknown") + ')");

}

@Override
public UUID read(JsonReader in) throws IOException {
return UUID.fromString(in.nextString().replaceFirst(" \\(.+\\)",
"").replaceFirst("(\Ww{8})(\\Ww{4})(\w{4})(\\Ww{4})(\w{12})", "$1-$2-$3-$4-$5"));
}

To use this TypeAdapter in conjunction with DataUtils you can use
DataUtils.with(Collections.singletonMap(UUID.class, new UUIDTypeAdapter()) . This returns you a DataUtils
instance with additionally registered UUIDTypeAdapter. DataUtils.with acctepts a Map with the Type
as key and either TypeAdapter or TypeAdapterFactory (Also all other type adapters gson is
supporting).

For easy mapping of multiple type adapters you can use Utils.map(key, value, key, value, ...)

Revision #5
Created 5 July 2017 08:57:04 by deregges
Updated 17 October 2017 09:19:57 by deregges

