
Simple Commands
BaseIO simplifies command creation with the class SimpleCommand . Instead of implementing
ICommand you extend SimpleCommand .

This is what SimpleCommand can do for you:

Simple command names
getCommandName() and getCommandAliases() are combined in commandNames() where the
first command name is the actual command name and the others are aliases. Example:

public List<String> commandNames() {
 //return Collections.singletonList("name1");
 return Arrays.asList("name1", "name2", "name3");
}

localized/default command usage
Provide a localization key in commandUsage() and it will be localized as described in
Localization. Provide an invalid or no (null) localization key and SimpleCommand creates a
default command usage for you based on the arguments.

redundancy removal
isUsernameIndex and compareTo are removed.

Options
You can define command options in getOptions() . Options are arguments starting with a
hyphen that can be used at any position of the arguments. Additionally options might
have arguments attached to themselves. When implemented, getOptions() must return a
map with the option string as the key and a string array of potential option arguments, the
elements describing the option argument at its index. If found, the options will be cut out
of the argument array and added to the option set that will be passed to the run method
you have to implement in your command.

Example:

If you don't like the simplifications made by this feature just override the original method
from ICommand.

https://wiki.ender.io/books/baseio/page/localization

 If now a player uses the command /mycommand arg1 arg2 -opt1 A B arg3 -opt3 the output
would be:

@Override
public void run(MinecraftServer server, ICommandSender sender, String[] args, Map<String, String[]> options) {
 System.out.println("Args: " + String.join(" ", args));
 for (Map.Entry<String, String[]> option: options.entrySet()) {
 System.out.println("Option " + option.getKey() + ": " + (option.getValue == null ? "null" : String.join(" ", option.getValue())));
 }
}

@NotNull
@Override
protected Map<String, String[]> getOptions() {
 //return Utils.mapKeys("opt1", "opt2", "opt3");
 return Utils.map("opt1", new String[]{"oa1", "oa2"}, "opt2", null, "opt3", null);
}

Args: arg1 arg2 arg3
Option opt1: A B
Option opt3: null

Tab Completion
Tab completions can be defined by the return string in tabCompletions() . The syntax
allowes highly configurable tab completions:
1. The completions for each argument are seperated by a space.
2. The different completions for an argument are seperated by a pipe ("|").
3. Conditions for a completion are written in braces directly before it.
4. If you have multiple completions for a condition you can seperate them by a comma

instead of a pipe.
Conditions are arguments that have to be typed anywhere before the completion. With
that you are able to implement completely different tab completions based on the
arguments the user used. See the example for usage.

Examples:

Variables are available for tab completions. They are defined by a leading "%" and are
also customizable. Build-in variables are:

"comp1|comp2|comp3" => The completions "comp1","comp2" and "comp3" for the first argument

"compA compB1|compB2 compC" =>
 "compA" for the first, "compB1" and "compB2" for the second and "compC" for the third argument

"compA1|compA2 (compA1)compB1,compB2|compB3" =>
 "compA1" and "compA2" for the first argument, "compB3" for the second argument, "compB1" and "compB2" only if argument 1 is "compA1".

%d : Dimensions (can be resolved to the dimension id by WorldUtils.
%p : Players
%null : No completions (explicitly)

Additionally you can define your own variable by implementing customTabCompletions . This
method will be called if the tab completion contains an unknown variable and requests a
list of completions for this variable. The currently requested variable is found in the
parameter tag without the leading % . Other parameters are the command sender, the
currently typed arguments and the completions up to that point (read-only).

Example:
@Override
protected String tabCompletions() {
 return "compA|%p|%var1";
}

@Override
protected Collection<String> customTabCompletions(String tag, List<String> current, ICommandSender sender, String[] args) {
 if (tag.equals("var1")) {
 return Collections.singletonList("result1");
 }
 return null;
}

Revision #13
Created 31 May 2017 11:00:39 by deregges
Updated 15 October 2017 21:44:22 by deregges

